Instance Transfer Learning with Multisource Dynamic TrAdaBoost

نویسندگان

  • Qian Zhang
  • Haigang Li
  • Yong Zhang
  • Ming Li
چکیده

Since the transfer learning can employ knowledge in relative domains to help the learning tasks in current target domain, compared with the traditional learning it shows the advantages of reducing the learning cost and improving the learning efficiency. Focused on the situation that sample data from the transfer source domain and the target domain have similar distribution, an instance transfer learning method based on multisource dynamic TrAdaBoost is proposed in this paper. In this method, knowledge from multiple source domains is used well to avoid negative transfer; furthermore, the information that is conducive to target task learning is obtained to train candidate classifiers. The theoretical analysis suggests that the proposed algorithm improves the capability that weight entropy drifts from source to target instances by means of adding the dynamic factor, and the classification effectiveness is better than single source transfer. Finally, experimental results show that the proposed algorithm has higher classification accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Boosting for Transfer Learning Using Dynamic Updates

Instance-based transfer learning methods utilize labeled examples from one domain to improve learning performance in another domain via knowledge transfer. Boosting-based transfer learning algorithms are a subset of such methods and have been applied successfully within the transfer learning community. In this paper, we address some of the weaknesses of such algorithms and extend the most popul...

متن کامل

Selective Transfer Between Learning Tasks Using Task-Based Boosting

The success of transfer learning on a target task is highly dependent on the selected source data. Instance transfer methods reuse data from the source tasks to augment the training data for the target task. If poorly chosen, this source data may inhibit learning, resulting in negative transfer. The current most widely used algorithm for instance transfer, TrAdaBoost, performs poorly when given...

متن کامل

Automatic Transfer Between Negotiation Tasks

Learning in automated negotiations, while useful, is hard because of the indirect way the target function can be observed and the limited amount of experience available to learn from. Transfer learning is a branch of machine learning research concerned with the reuse of previously acquired knowledge in new learning tasks to, for example, reduce the amount of learning experience required to atta...

متن کامل

A Multi-Source TrAdaBoost Approach for Cross-Company Defect Prediction

Cross-company defect prediction (CCDP) is a practical way that trains a prediction model by exploiting one or multiple projects of a source company and then applies the model to target company. Unfortunately, larger irrelevant crosscompany (CC) data usually makes it difficult to build a prediction model with high performance. On the other hand, brute force leveraging of CC data poorly related t...

متن کامل

Boosting for Regression Transfer

The goal of transfer learning is to improve the learning of a new target concept given knowledge of related source concept(s). We introduce the first boosting-based algorithms for transfer learning that apply to regression tasks. First, we describe two existing classification transfer algorithms, ExpBoost and TrAdaBoost, and show how they can be modified for regression. We then introduce extens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014